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1. Introduction, 

Newton's Methodl is one of, the most powerful methods for 

the solution of n simultaneous nonlinear equations in n 

unknowns. When applied to the equations 

V,(Yj) = 0 (i,j = 1,2 ,..., n) 

the method takes the form 

where and Vi are components of the column vectors y 

and V respectively; A(y) is an nxn matrix whose 

(i,j)-th element is aVi/ayj; and y ('I denotes the R-th 

iterant of y. One of the characteristics of Newton's Method 

is its quadratic convergence rate, provided the initial guess 

Y ( O )  is "sufficiently close" to the solution y*. Further 

details are given in the Kantorovich Theorem1. 

Recently, a generalized form of Newton's Method, under 

the names of quasilinearization or generalized Newton-Raphson2, 

has been applied in the solution of the two-point boundary value 

problems arising in trajectory optimization. The basis of the 

generalized Newton-Raphson procedure is the linearization of 

the differential equations describing the trajectory (state 

variables and Lagrange multipliers). Roberts and Shipman3 show 
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t h a t  t h e  p e r t u r b a t i o n  method o f  Goodman and Lance4 i s  a l s o  a 

form of  t h e  g e n e r a l  Newton's Method. 

It i s  t h e  pu rpose  o f  t h i s  n o t e  t o  show how Newton's 

Method, E q .  (11, can  b e  d i r e c t l y  a p p l i e d  t o  t h e  two-point  

boundary v a l u e  problems a r i s i n g  i n  t r a j e c t o r y  o p t i m i z a t i o n .  

2 .  V a r i a t i o n a l  two-poin t  boundary v a l u e  problem. 

Suppose t h a t  a t r a j e c t o r y  o p t i m i z a t i o n  problem i s  g i v e n  

i n  t h e  form of min imiz ing  t h e  f u n c t i o n a l  

P t f  

J 
0 

s u b j e c t  t o  t h e  c o n d i t i o n s  t h a t  

S i ( X ( 0 ) )  = 0 ( i  = 1,2, ..., q n )  ( 3 )  

j c  = g = f ( X , U , t )  ( 5 )  

T where X = (XI, X 2 , . , . ,  X n )  i s  t h e  s t a t e  and U = ( U 1 , U 2 ,  . . . ,  
U m l T  i s  t h e  c o n t r o l .  It i s  known t h a t  t h e  s o l u t i o n  o f  t h i s  

p rob lem i s  g i v e n  i n  terms of t h e  d i f f e r e n t i a l  e q u a t i o n s  

x = f ( X , U , t )  
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where U i s  de te rmined  from t h e  e q u a t i o n  

T a f  aQ O = P  - a u + m >  

and P = ( P l , P 2 , .  . . , P n ) T  . Assume t h a t  t h e  m x m  m a t r i x  

a a Q  i s  p o s i t i v e  d e f i n i t e .  Then one can  s o l v e  for 

U i n  terms o f  X,P,  and t ,  and t h e n  s u b s t i t u t e  for U i n  E q .  

(6) t o  o b t a i n  

dP a u t  37) 

- i = f ( X , P , t )  

i, = & X , P , t )  . 

The n a t u r a l  boundary c o n d i t i o n s  from t h e  v a r i a t i o n a l  problem 

supp ly  (1) n boundary c o n d i t i o n s  a t  t = 0 ,  w i t h  n o f  t h e  

X and Pi unknown, ( 2 )  n t l  boundary c o n d i t i o n s  a t  

t f  and n o f  t h e  Xi and P unknown. T h e r e f o r e ,  t h e  

boundary c o n d i t i o n s  can b e  w r i t t e n  as 

w i t h  t f '  J 

j 
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The problem c o u l d  be s o l v e d  i f  t h e  c o r r e c t  v a l u e s  of  t h e  unknowns 

a t  t = 0 and t h e  v a l u e  of  t h e  t e r m i n a l  t i m e  t f  were known. 

L e t  t h e s e  unknowns form t h e  ( n t 1 ) - v e c t o r  C ,  w i t h  ‘ n t l  = t f  0 

A change o f  i ndependen t  v a r i a b l e  w i l l  b e  made u s i n g  a d e v i c e  

due t o  Long5. 

L e t  t = C n t l s  ( 0  s 1) .  Then t h e  d i f f e r e n t i a l  

e q u a t i o n s  ( 7 )  can  b e  w r i t t e n  as 

_.- dP - cn t lg (x ,P , cn tp )  
ds 

O < S < l  - - 

and t h e  boundary c o n d i t i o n s  become 

P i ( 0 )  = J i t n ( C 1 , C 2 , . . . , C n )  

- 
R . ( X ( l ) , P ( l ) , C n t l )  = 0 ( j  = 1,2 ,..., n t l )  . 

J 

T T  I n t r o d u c i n g  t h e  n o t a t i o n  YT = ( X  , P  ) t h e  two-point  boundary 

v a l u e  problem becomes 

i 
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Y ( 0 )  = J(C) 

V(Y(l),C) = 0 

which is in form that can be used for solution by Newton's 

Method. Notice that C and V have the same dimensionality. 

3. Solution by Newton's Method. 

A two-point boundary value problem can be stated as 

follows, Determine the constant vector B so that the vector 

Z(t) satisfies the following equations on the interval 0 5 t 1. 1 : 

Z(0) = K ( B )  ( 9 )  

where K, Z and F are column vectors of dimension n; L 

and B are column vectors of dimension m. 

Equation (11) represents m simultaneous equations in the 

m unknowns B since Z(1) can be expressed as a function of 

B from Eq. ( 9 )  and Eq. (10). Apply Newton's Method [Eq. (l)] 
j' 
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where 

- aL i s  a n  mxn m a t r i x  whose ( j , i ) - t h  e lement  i s  a L . / a Z i  ; 

- aL i s  a n  m x m  m a t r i x  whose ( j , k ) - t h  e lement  i s  a L . / 3 B k  ; 

az J az 

aB J 

i s  a n  nxm m a t r i x  whose ( i , k ) - t h  e lement  i s  3Zi /3Bk ; - 
aB 

and  ( j , k  = 1,2,. .., m ) ,  ( i  = 1,2,.. ., n )  . The m a t r i c e s  

aL /aZ  and aL/aB can  be o b t a i n e d  from E q .  (11) by t a k i n g  t h e  

a p p r o p r i a t e  d e r i v a t i v e s .  The m a t r i x  a Z / a B  i s  o b t a i n e d  by 

w r i t i n g  E q .  ( 1 0 )  i n  i n t e g r a l  form and t h e n  d i f f e r e n t i a t i n g  

w i t h  r e s p e c t  t o  B .  Thus 

t 

Z ( t )  = Z ( 0 )  + [ l ? ( Z , B , s ) d s  

and  

t 
a 
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If Eq. ( 1 5 )  i s  d i f f e r e n t i a t e d  w i t h  r e s p e c t  t o  t t h e n  t h e  

m a t r i x  a Z / a B  w i l l  s a t i s f y  t h e  m a t r i x  d i f f e r e n t i a l  e q u a t i o n  

aZ(0)  - aK 
aB aB 

- -  

where 

- aF i s  an  nxn m a t r i x  whose ( i , j ) - t h  e lement  i s  aFi/aZ 

- aF i s  a n  nxm m a t r i x  whose ( i , k ) - t h  e l emen t  i s  aFi/aBk ; 
az j '  

aB 

i , j  = 1 , 2  ,..., n and k = 1 , 2  ,..., m . 
Suppose t h a t  a n  i n i t i a l  g u e s s  a t  B i s  made, Z ( 0 )  i s  

computed from Eq. ( g ) ,  and Eq. ( 1 0 )  i s  i n t e g r a t e d  from t = 0 

t o  t = 1, The v a l u e  of  L ( Z ( l ) , B )  w i l l  g e n e r a l l y  n o t  b e  

z e r o .  ( A  t r a j e c t o r y  f o r  which L # 0 w i l l  b e  c a l l e d  a nominal  

t r a j e c t o r y . )  E q u a t i o n  ( 1 6 )  i s  i n t e g r a t e d  from t = 0 t o  

t = 1, w i t h  i n i t i a l  c o n d i t i o n s  g i v e n  by Eq. ( 1 7 ) .  I n  Eq. ( 1 6 )  

t h e  m a t r i c e s  ( a F / a Z )  and  ( a F / a B )  are e v a l u a t e d  on t h e  

nominal  t r a j e c t o r y .  Then ( a Z / a B )  w i l l  b e  t h e  r a t e  o f  change 

o f  Z due t o  a change i n  B ,  on t h e  nominal  t r a j e c t o r y .  Thus 

( a Z / a B )  a t  t = 1 i s  o b t a i n e d ,  A ( B )  can  be e v a l u a t e d ,  and  a 

new v a l u e  o f  B can  be  o b t a i n e d  from Eq. ( 1 2 )  p r o v i d e d  A(B) 

i s  n o n s i n g u l a r .  

If t h e  d i f f e r e n t i a l  e q u a t i o n s  ( 1 0 )  are  h i g h l y  n o n l i n e a r  t h e n  

t h e  change i n  B ,  as g i v e n  b y  Eq. (18), may be t o o  l a r g e .  
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This occurs when the norm of 

of L"). In this case the following scheme is employed. 

L'"') is greater than the norm 

where 0 < a - < 1. The "best" value of a must be determined 

empirically for each iteration. The use of a in the 

computational algorithm is a realization of Theorem 3 in the 

paper by Moore6. 

The computational algorithm is summarized as follows. Set 

( 0 )  R = 0 and choose B . 

(1) Integrate E q .  (10) from t = 0 to t = 1 with initial 

conditions given by Z(O> = K ( B ( ' ) )  ,. 

( 2 )  (11) Determine L ( Z ( l ) , B " ) )  = L ( ' )  and the norm of L , 
denoted by IIL(')II. If [lL")Il is less than some preassigned 

E then B(') is the accepted solution. If (IL(")(I > E then 

(1) if R = 0 go to step (IV) 

( 2 )  if R > 0 go to step (111) . 

(111) Compare IIL( ')I/  and the previous norm, W. 

(1) Ib(R)l l  2 W Decrease a and form B") = C t ab. 

Go to step (I). 
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(a) Set C equal to B , a equal to unity and W equal to 

Integrate Eq. (16) from t = 0 to t = 1 with initial 
a z ( o >  - - aK( B( ') ) 

aB aB condition given by 

(VI) Form A(B(')) according to Eq. (13) and solve the linear 
system A(B('))b = - L (') f o r  b. 

(VII) Form B'"') = B(') t ab. Add 1 to the value of R. Go 

to step (I). 

This computational algorithm was programmed in FORTRAN 

for the CDC 6600 Computer at the University of Texas. The 

problem given in the next section was used to test the 

effectiveness o f  the algorithm. 

4. Example problem. 

A low-thrust Earth-Mars trajectory is sought. The 

vehicle is assumed to travel in an inverse square gravitational 

field. The orbit of Mars is assumed to be an ellipse with an 

eccentricity o f  e = 0.093393, a semi-major axis of a = 1.523691 

AU (astronomical units), lying in a plane which is inclined to 

the ecliptic at an angle of i = 0.032289 radians. The equations 
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of motion which describe the transfer trajectory are expressed 

in a heliocentric rectangular Cartesian coordinate system whose 

X4-axis coincides with the line of ascending node for the Mars 

orbit. The X -axis lies in the Ecliptic plane and the 

coincides with the angular momentum vector of the earth with 

respect to the sun. Letting (X ,X ,X ) and (X4,X5,X6) be 

the velocity and position components respectively in the 

(X4,X5,X6)-coordinate system, the equations of motion are 

X6-axis 5 

1 2 3  

- -  dX1 - t RcosUlcosU2 
d-r 

- -  dX2 - -YR-~X t RcosUlsinU2 
dr 5 

6 - -  dX3 - -YR-~X t RsinU1 
d-r 

dX4 
dr - x1 - -  

dX 
d-r x2 
5= 

dX6 - -  
d-r - x3 

2 2 2 
5 where R2 = X4 + X + X6 and R = Bc/(l-B-r) on the interval 

0 I r I T f .  
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For  t h e  u n i t s  chosen  i n  t h e  problem: 

t i m e  i s  d a y s  

p o s i t i o n  i s  i n  AU 

v e l o c i t y  i s  i n  AU/day 

mass i s  i n  v e h i c l e  mass 

w i t h  

T = 0 = (12:OO noon May 9, 1971) 

B = 0.00108 v e h i c l e  mass/day 

c = 0.0453649854 AU/day 

y = 0.000296007536 AU3/day2 . 

The c o n t r o l  a n g l e s  a re  shown i n  F i g .  1. The i n i t i a l  c o n d i t i o n s  

a t  T = 0 are 

X,(O) = -O.OOO3455906 

X2(0) = q-0.0171986836 

x3(0) = 0.0 

X4(0) = -0.9998 

X5(0) = 0.02009 

X6(0) = 0.0 . 

The t e r m i n a l  c o n d i t i o n s  a re  

w i t h  Yi - 

Xi(~f) - Y ~ ( T ~ )  = 0 i = 1,2, ..., 6 
i = 1,2,3 . - dYi+3  

d-r 



FIGURE I :  CONTROL ANGLES 
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The position of Mars at time T is given by 

Y6(~) = k D t k D 31 1 32 2 

where kll = cosw 

k12 = -sinw 

= (cosi)(sinw) 

k22 = (cosw)(cosi) 
k21 

k31 = (sini)(sino) 

k = (cosw)(sini) 32 
D1 = a(cosE - e) 

1/2 D2 = a(sinE)(l-e 2 ) 

w = 5.8541335 , the argument of perihelion of 
Mars at T = 0. 

E is the eccentric anomaly of Mars. It satisfies Kepler's 

equation ( ~ 2 0 )  

3 1/2 
E - e(sinE) = .r(y/a ) + Eo - e(sinEo) 

Eo = 4.250885 . 

It is required that the vehicle arrive at Mars with maximum 

mass. Therefore the quantity B T ~  - 1 is to be minimized. 

The equations governing the Lagrange multipliers are 
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dPi 
d-c 
- -  

it3 - -P 

i = 1,2,3 

3 = yR- Pi + hXit3 dPit3 
d-c 

h = - ~ Y R - ~ [ P ~ X ~  + P X + P X 1 
2 5  3 6 '  

The controls U1 and U2 are given by 

sin(U1) = -P / A  

cos(U1) = 6 / A  

3 

sin(U2) = -P2/6 

2 2 2 A = 6  + P ,  
2 2 2 6 = P 1 + P 2 .  

Thus U1 and U2 can be eliminated from the differential 

equations in X. In addition to the 6 terminal boundary 

conditions given by Xi(-cf) - Yi(-cf) = 0 the variational 

analysis gives the additional boundary condition (corresponding 

to -cf being free) 

6 dXi dY 
B + 1 P i ( T  - d-c -) = 0 at -c = T~ . 

i=l 

Make the =f The unknowns are Pi(0), (i = 1 , 2 ,  ..., 6), and 
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change of variable T = B t , (0 1. t 1. 1) , and let 

Pi(0) = Bi 

with Zi = Xi 

equations become (Z = =) 

7 
(i = 1,2,.0., 6). In the notation of Section 3, 

= Pi (i = 1,2,..e, 6) the differential ’ ‘i+6 
e dZ 

’ “i+6 ] = Fi ii = -B 7 [ Y Z ~ + ~ R - ~  + ( 1-6 B7t v 

- 
Fi+3 ‘i+3 = B7Zi - 

for i = 1,2,3 

The initial conditions are 

Zi(0) = Xi(0) 

i = 1,2,..*, 6 

Zi+6(O) = Bi . 



The terminal conditions at t = 1 are 

= ~ ~ ( 1 )  - Y ~ ( B ~ )  = o i = 1,2, ..., 6 Li 

In the numerical solution of this problem the following initial 

values were guessed 

B1 = 0.3455906 

B~ = 17.1986836 

= 0 . 0  (i = 3,4,5,6) Bi 
B7 = 184.0 . 

B aligned the initial thrust direction These values of Bl, B2, 

along the vehicle's velocity vector. 
3 

The factor a was determined by the following procedure. 
-k A number r,l was chosen; then a was set equal to r for 

k = 0,1,2, ..., p , where p is the least integer for which 

llL("')ll < 1F(")11 . (Other procedures such as a Fibonaccian 

search are possible,) 

Several different computer runs were made. In each run 

the process was terminated whenever \\L(') 1 )  became less than 

The error norm was chosen as 
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Convergence c u r v e s  f o r  f o u r  d i f f e r e n t  v a l u e s  o f  r a r e  

shown i n  F i g .  2 .  Each of t h e  f o u r  c u r v e s  c o n t a i n s  a p l a t e a u  

r e g i o n  i n  which t h e  t e r m i n a l  e r r o r  norm d e c r e a s e s  v e r y  s l o w l y .  

(1 < i c 6 )  were n e g a t i v e  - - I n  t h i s  r e g i o n  some o f  t h e  

( n o t e  t h a t  t h e  converged  v a l u e s ,  BZ,  g i v e n  below, are  p o s i t i v e ) .  

A t  t h e  end o f  e a c h  p l a t e a u  r e g i o n ,  a l l  

F u r t h e r  data  i s  g i v e n  i n  Tab les  1 and 2 .  T a b l e  1 shows t h a t  

Bi 

Bi were p o s i t i v e .  

t h e  speed of  computa t ion  i s  dependent  on t h e  c h o i c e  o f  r. 

The converged  v a l u e s  B* a re  
j 

BT = 14.065205938 

B; = 17.179740719 

B$ = 1.7012931523 

B t  = 0.3953467’1015 

B* 5 = 0.18375894864 

Bg = 0.0021643563219 

BT = 175.46074200 . 

The Earth- to-Mars  t r a n s f e r  i s  accompl i shed  i n  175.460742 d a y s .  



T a b l e  1: Convergence Data 

Computing T i m e  
r I t e r a t i o n s  i n  Seconds  

2 . 0  

3 . 0  
3 . 5  
4 .0  

4 1  
46  

2 3  
3 1  

308  e 5 0 2  
2 8 9  495  
1 3 8  0 2 9  
1 8 7 . 6 6 8  

T a b l e  2 :  Last  t e n  i t e r a t i o n s  f o r  r = 3 . 5  

I t e r a t i o n  
Number 

T e r m i n a l  Error 
Norm 

1 4  
1 5  
1 6  1 . 5 3 5  x 1 0 - l  

1 7  
1 8  

19 
2 0  

2 1  

22 

23  

7 0 g o 9  x 1 0 - 2  

4 .214  x ~ o - ~  

7 7 6 5  x10-7 
8 9 5 1  x i 0  

1 . 2 8 6  x l o  

1 4 2 5  x10-2 

-11 

- 1 4  
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5. Conclusions. 

Formulating a trajectory optimization problem in the 

notation of Section 3 allows one to make direct use of Newton's 

Method. The resulting trajectory optimization scheme is a 

rapidly converging computational procedure as was shown in the 

example problem. Further extensions of this method to problems 

with intermediate boundaries (stages) will be treated in a 

later report. 
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